

Appendices & Supplements

 Usability Principles 4

Contents

Appendices...5
A. Usability Principles ..6
B. Usability Heuristics ..10
C. Usability Tests ..15
D. KQML ..20
E. XML and XSL ..30
F. Java Servlets..34
G. MySQL Data Types..35
H. Neural Networks...36
I. Bayesian Networks ..42
J. Competing Products...49
K. inTelly Homepage ..56
L. ZIP Stat - Statistics for inTelly.dk ..57

Supplements ..59
M. User Interface Version 0.1 ...60
N. User Interface Version 0.2..73
O. User Interface Version 0.3..90
P. User Interface Version 1.0 ..112

 Usability Principles 5

AAPPPPEENNDDIICCEESS

 Usability Principles 6

A. Usability Principles
In this appendix it is tried to identify the main things, which should be known by designers
when they try to design good and user friendly systems. This type of system design process,
referred to as usability design, consist of four key points also called principles. This design
process puts a focus on the users and their interaction with the system, which is done by using
the four principles made by [JDG] and [JDG2]. Some authors have also categorised these
design principles into a number of three but in this project it was chosen to use the
categorising of four principles. The four principles are:

• Early – continual – focus on users
• Early – and continual – user testing
• Iterative design
• Integrated design

In the following sections these principles will be explained in detail. There will also be a
number of suggestions for methods used to achieve the principles.

Early – Continual – Focus on Users
When making a User-Centred Design it is important to have direct contact with the intended
or actual users. Therefore the first to be done is to identify the actual user and also what they
will be doing with the system. This means that the designer must actual meet with the users
(face to face) and not only e.g. read about their behaviour etc. It is important for the designer
to understand the users in order to make a User-Centred Design. There are several methods to
get focus on users and in [JDG, p. 98-103] there is presented the following list:
Talk with users Talk with the intended users and discuss their problems and

what works well in the current situation.
Visit customer locations Visit potential locations for the system to be used. The

designers will typically find out things they could not
imagine, when seeing the actual place where the system
should be used.

Observe users working Visit the workplaces of the users. The typical situation is
that a system is a follow-on to existing systems. This means
that it is important for the designer to get in contact with the
existing system, and the best method to do this is to see it in
use and thereby learn its good and bad features.

Videotape users working It will be a great help if the other members of the design
team can see the users working. Making a video recording
could do this.

Learn about the work Here the designer should be aware of what organisation

 Usability Principles 7

organisation structure the system should work in. This means that it will
be possible to take in account if there e.g. are different types
of users using the system.

Thinking aloud If the potential users are saying out loud what they are
doing, and what they want, this gives the designer a good
insight in the users work. Often this method will ensure that
important details will be visible to the designer.

Try it yourself The method will ensure that the designer will be able to see
many of the user tasks in a different light. The designer will
have to take a direct confrontation with the existing system
and the corresponding tasks.

Participative design This means that the intended users should be a part of the
design team. If this is possible it will ensure that the
potential users continuously inspect the design. This will
minimize the efforts in getting feedback from the users.

Expert on design team This is another method of getting relevant members into the
design team. The expert (e.g. the potential user or another
expert) will be connected to the design team as a consultant.

Task analysis This is an analytical process used to determine the specific
behaviours of the users of the system. Making scenarios
sketching the working process. Breaking job activities into
task units. The result is a list of functions needed in the
system.

Surveys and questionnaires To be able to make good questionnaires the designer must
first talk to the users in order to get an idea of what to ask.
The answers can be a good help in the design process.

Testable behaviour target goals A testable behaviour target goal is a way of giving phrases
like “user friendly” a more technical basis and to give an
metric indication of what progress has been made with the
new system. A testable behaviour target goal could be: How
many of the users can do this operation in 5 minutes? And
the passing mark could be e.g. 70%.

Early – and Continual – User Testing
The hypothesis is that it is not possible to make an optimal design the first time. This means
that there should be some considerations during the design of the system. Continual user
testing (from the design start) is a good measure of whether the system is heading in the right
the direction or there should be made corrections.

 Usability Principles 8

The methods in early user testing are the following [JDG, p. 103-108]:
Printed or video scenarios There should be made some user scenarios on e.g. paper and

shown to members of the design team. The discussion about the
user scenarios is ensuring that the design team has to discuss
both the sketch of the user interface and the functionality behind.

Early user manuals This gives the potential users a good opportunity to comment on
the design because a user manual ensures that the design is easy
to understand for the potential users.

Mock-ups Making a mock-up will give both the users and the designers a
good idea of the system and therefore is this a good starting point
in a dialogue.

Simulations Many system functions can be simulated (e.g. pencil and paper).
The simulations are therefore a good help in the design process.

Early prototyping By using software development toolkits, prototypes can easily be
created. The prototypes can give the designers a quick and
precise response from the users.

Early demonstration This will ensure that the designer will have to go through the
operations (have to explain the sequence of operations) and
maybe will find out problems with the system.

Thinking aloud This will mean that the designers will get to know what the users
are thinking and where there are problems with the design of the
user interface.

Make videotapes

A video can open the minds of the designer about a problem in
the system.

Hallway and Storefront
methodology

This method is about placing the system in a public place, where
people can tryout the system. This makes it possible to get in
touch with many different users.

Computer bulletin boards,
forums, network and
conferencing

This makes it possible to get in touch with users all over the
world.

Formal prototype test Most of the previous mentioned methods are informal and these
give valuable information about the design. But where possible,
it will be a good idea to make more formal test, which typically
gives more accurate results.

Try-to-Destroy-it contests At the end of the design process it will be valuable to get some
users to try to make the system go down by pressing it to its
limits.

Field studies This will help discover problem with the system outside the
secure world in the laboratory.

 Usability Principles 9

Follow-Up studies These are studies carried out on the system after the release date.

Iterative Design
When developing a user-centred system, there has to be iterated in the design, because you
cannot make it right the first time. The key elements are [JDG]:

• Identification of required changes
• An ability to make changes
• A willingness to make changes

The required changes will typically be identified in corporation with the users (user tests,
thinking aloud, video recordings, etc). To apply the changes it is necessary to have both the
ability and the willingness in the design team to make them happen.

In the following table some methods to achieve the iterative design are listed:
Software tools It is necessary to have software tools that support the iterative

design. This means that changes both in the user interface and in
the functionality must be easily applied. Many of today’s
graphical software tools make changes in both the user interface
and the functionality simple.

System development work
organisation

The design team must be a part of an organisation that supports
the User-Centred Design method. This implies that the whole
organisation has a structure that can handle eternal changes and
are willing to handle these changes.

Integrated Design
One of the key aspects in User-Centred Design is to ensure that all usability aspects are
handled in parallel. This implies according to [JDG] that one person is responsible for all
aspects concerning usability.

The methods that could be used to ensure an integrated design are:
Few persons in control of
usability

As already stated only few persons should handle the usability.
This ensures that changes in usability aspects of the system can
be applied without the whole design team being involved.

Early focus on users Applying early focus on the users will ensure the integration of
the design because all user aspects will at an early state become
clear to the designers.

 Usability Heuristics 10

B. Usability Heuristics
This appendix presents the usability heuristics made by Jacob Nielsen in the book “Usability
engineering” [JN1] and from his homepage useit.com [JN3].

Usability heuristics are principles that can be used in an evaluation of almost any type of user
interface [JN1, p. 115]. In this project the usability heuristics are used in the accomplishment
of usability evaluations.

The primary reason for using the usability heuristics are that the use of the heuristics gives a
systematic evaluation of a user interface. The heuristics are furthermore simple to use and is
common knowledge in the task of usability engineering.

The usability heuristics contains the following principles [JN1, p. 20]:

• Simple and natural dialogue
• Speak the users’ language
• Minimize the users’ memory load
• Consistency
• Feedback
• Clearly marked exits
• Shortcuts
• Good error messages
• Prevent errors
• Help and documentation

In the following sections the usability heuristics are described in detail.

Simple and Natural Dialogue
A user interface should always be kept as simple as possible. The main reason is that the more
information and possibilities that are available on a user interface the more the user has to
learn resulting in more potential errors.

The user interface should match the users’ tasks as good as possible. If the user interface is
made according to the users tasks the needed navigation will be minimized and so will the
errors.

Connected information should be clustered on the user interface and only what is needed for
the current task should be displayed. Important information should be presented in a way that

 Usability Heuristics 11

requests focus (without overdoing it!) Too much information could result in that important
information, features etc. is overlooked.

The user should be in control of the sequences in the task to be performed although the user
interface should contain a suggested sequence for novice users.

If colours are used carefully they can contribute positively to the user interface. If not the
colours can result in a more confusing and distracting user interface.

Speak the Users’ Language
The terms used in the user interface should be kept in user terms and not in system oriented
terms. If possible the language should be the native language of the users. The language does
not necessarily have to be kept simple, but it should be kept in terms of the actual users’
vocabulary, which means it is allowed to use technical/special language of the user.

It is important that there is a mapping between the information presented at the user interface
and the users conceptual model of the tasks to be done.

One method to ensure to speak the language of the user is to e.g. let the users vote for their
favourite terms in the design phase. Another solution could be the use of metaphors in the
design, but there is always a risk that the metaphors could be misinterpreted.

Minimize the Users’ Memory Load
The user cannot remember everything. Therefore should the system help the user whenever
possible. Some examples of suggestions to minimize the users’ memory load are presented
below:

• When the user are to enter some data it is often easier to edit some default values
rather than entering all data. This could hold for situations where the entering of the
data are used often and it is typically the same data to be entered every time.

• In input fields it is often helpful to illustrate the required format, also before the errors
are made.

• Use of generic commands. This means to use the same command for similar things to
happen in different situation. E.g. a copy/paste command could work in different ways
depending on what to copy/paste, but it would a good help for the user if the command
was the same because he or she then will have one command sequence less to learn.

• The usage of icons makes the action easy to remember and recognise because of their
figurative/metaphorical appearance.

 Usability Heuristics 12

Consistency
The user will be able to learn to use a system faster if there is kept a certain consistency in the
design of the user interface. One example could be that a command entered always performs
the same task and not something completely different in different situations.

Another way to achieve consistency is to use a standard user interface that is well known by
many users. This will ensure that the users are typically already familiar with the layout and
can concentrate on their tasks.

Consistency in a system is also achieved by making sure that the parts of the user interface
that is to be used in more than once is fixed at the same location all the way through the
different user interfaces.

Feedback
The system should always inform about what it is doing. There should also be a feedback
telling how the system interprets user inputs. It is important also to give positive feedback to
the user and not only feedback when something has gone wrong.

Important types of feedback are e.g. given as a warning message in situations where the user
is about to perform an irreversible task.

There should also be some considerations about the consistency of the feedback. In some
situations it would be appropriate to have a low consistency (e.g. minor problems that are
solved automatically) and in other situations a high consistency is necessary (e.g. major
software/hardware failures).

The response time is an important feedback factor. If the response time is too long and there is
no feedback then the user might think that something went wrong in the process and might
start a search for the cause. There are also situations where the response time could be too
short and some feedback is necessary (e.g. in situation where the task is performed so quickly
that the user do not believe it was performed correctly). In situations with long response time
it is a good idea to use progress bars, explaining dialogues boxes etc.

Clearly Marked Exits
The user must never feel trapped in any situation, because the user will get a feeling of
loosing control. There should therefore always be clearly marked exit/cancel/back/undo-
options available. There will always be made errors so it is important to make it easy to

 Usability Heuristics 13

recover from errors. It should also be possible to escape tasks that take longer than e.g. 10
seconds.

Shortcuts
For the system to appeal both novice and advanced users it should make it possible to perform
tasks by the use of shortcuts. Experts will benefit from such features when certain tasks are to
be performed several times. Shortcuts include: “type-ahead” possibilities (do not need to wait
for the system at all stages), historic that remember what the user has entered and default
values in input fields etc.

Good Error Messages
Error messages are critical because the user is in an unexpected situation where the system
failed to perform some decided task. The error message is an opportunity for the system to
give the user a constructive help solving the problem.

The demands for error messages are:

• They should be made in clear language (users language). This means that error
messages containing only some error code to be used by some administrator is
abandoned. If the error message contains error codes they should be placed in the last
part of the message or in some sub dialogue box.

• The error message should be precise rather than general in order to help the user with
the specific situation.

• The error message should be constructive and even better it should try to guess what
the user meant in the given situation and give suggestions how to solve the problem.

• They must be kept in a polite language and never blame the user.

One way to help the user to recover from errors would be to implement undo functions. A
good error message should refer to supplement reading in e.g. an online manual.

Prevent Errors
Preventing errors is even better than to provide good error messages. Errors typically occur
when the user e.g. has to spell out certain commands or data (typing errors). Typing errors can
sometimes be avoided by the use of e.g. check boxes, selectable items etc. Errors can also be
avoided by warning messages displayed before some critical task is to be performed. In
general a well-structured user interface can prevent many errors, because the important
information is presented clear and the state of the system appears distinctly.

 Usability Heuristics 14

Help and Documentation
There is typically a need for a supplement to the system itself in the shape of some user
manuals. It should although be noticed that the users typically do not read the manual before
they are forced to do it: when some error occurs, use of difficult unknown features etc.

The implementation of an online manual in the system is often a good solution because this
manual is always at hand and it can be context sensitive. An online user manual should also
be made according to the usability heuristics.

The user manual should have good index/search/task facilities and this goes for both written
and online manuals. It is important to include typically user terms in the index/search/task
facilities because the user will typically try these out at first in the search of the answer to a
problem.

In the generation of a user manual the following three phases in a use of a manual must be
considered thoroughly:

1. Search for the answer to the problem/task etc.
2. Understand what the manual says about the subject.
3. Apply the contents of the manual to the system

 Usability Tests 15

C. Usability Tests
In this appendix there will be a presentation of the tests, which have been used during the
development phase. The tests presented in this section are tests made with participants who
are chosen to be representative of the target end users. The tests are used to evaluate the
system performance due to some given criteria. The typical situation will be that the criteria in
the beginning of a system development phase will tend to be primary qualitative and as the
developments moves forward the tests become more quantitative. There will be presented four
different types of tests in this section:

• Exploratory test
• Heuristic evaluation
• Assessment test
• Validation test

Jacob Nielsen presents the Heuristic evaluation in [JN1, p. 115-155] and Jeffrey Rubin
presents the other tests in [JR, p. 31-42].

The primary objective of usability testing is to:

• Identify and correct usability problems
• Create systems that are easy to learn and use
• Create systems that satisfy the user
• Create a history of benchmarks
• Minimize costs
• Increase sales
• Compete with other systems and/or proposals
• Minimize risks

In the following sections there will be a description of the different tests used in this project.

Exploratory Test
Used to explore something in the design. This type of test is normally used as a part of the
first contact with the users.

When

The exploratory tests are conducted early in the development phase. Normally the test is
conducted when the system is still in the preliminary design phase. At this stage the definition
of the user should have been done. The functional specifications and early system models
however might still be in a phase where they have not fully been defined.

 Usability Tests 16

Objectives

The goal with this test is therefore to evaluate/explore/investigate the effectiveness of
preliminary design concepts, which also is known as the users conceptual model of the
system. The test should also be used gain/verify knowledge of the intended end users
(expertise, expectations, goal, etc.). This test might also give the designers an idea of the
intuitiveness and usefulness of the system being developed. If some of the foregoing
assumptions about the user or the system are wrong this could lead to usability problems later
on in the design.

Methodology

The way of performing such a test is to establish a close interaction between the test
participant and the test monitor to find out the consequence of the preliminary design ideas.
This can be done through the use of prototypes, simulation or mock-ups of the intended
system where the basic layout and organisation of functions are represented. When
developing prototypes for these tests it is only necessary to concentrate on the functionality
needed for the experiment.

During such a test of a prototype the test participant might perform a list of task if this is
possible but is this not yet possible the user can simply “walk through” the different mock-ups
and answer questions and/or comment on these mock-ups. The process for this type of test is
informal and there is a lot of interaction between the test participant and the test monitor.
Therefore the test monitor has the possibility to ask the test participant to give ideas about
how to improve confusing areas. The essential ideas with this type of test are to focus on why
instead of how and thereby reveal the participant’s reactions and thoughts about the
interaction.

Heuristic Evaluation
The heuristic evaluation is used as an alternative to the other tests. This means that this test is
not performed by involving the end users, but will involve e.g. colleagues, which will perform
the test.

When

The heuristic evaluation is most often performed in the early or middle stages of the
development phase. If conducted in the early stage the first prototypes should have been
defined but if the test is conducted in the middle of the design phase the fundamental or high-
level design should have been established.

 Usability Tests 17

Objectives

The purpose of the heuristic evaluation is to determine how the user interface mock-ups or
intended design are performing according to the usability heuristics given by Appendix B. It
is the goal to obtain a list of usability problems from a user interface design so that these can
be attended in the iteration.

Methodology

The method of conducting the evaluation is by looking at the different user interfaces and then
trying to come up with an opinion about what is good and bad about the interface. First the
test monitor should brief the test participant about the purpose of the test. The test itself is a
walkthrough of the different user interfaces and commenting on these. After the test the test
participant should be debriefed/interviewed by the test monitor for any suggestions and
improvements that could be made to the system.

There is a close interaction between the test participant and the test monitor before and after
the test but the only time where there should be any interaction with the participant during the
test is when he/she is clearly stocked and getting unhappy about the situation.

Assessment Test
This test is used to point out the strengths and weaknesses and to get ideas of the first
implementation of functionality and the user interface.

When

The assessment test is conducted either early or midway during the development process.
Normally this type of test is conducted after the fundamental or high-level design has been
established.

Objectives

The reason for conducting the assessment test is to expand the findings of the exploratory
tests. This means that this type of test continues the process from the exploratory test though it
goes deeper. It goes into the lower level functions and tests the usability of these.

The assessment test is essentially a test of the implementation of the intended design (primary
how not so much of why). This means that the test should show how well a test participant
could perform realistic tasks rather than explore how intuitive the system is. Therefore will
the result of the test be a list of specific usability problems.

 Usability Tests 18

Methodology

This test is performed by letting the test participant perform a list of tasks rather than letting
the participant walk through the screens and commenting. Therefore the interaction between
the test participant and the test monitor will be less because the participant’s actual behaviour
is more important than his thought process.

Validation Test
This test should validate that the system is functioning like it is supposed to, and that it fulfils
the demands set in the earlier stages in the development.

When

The validation test is conducted late in the development phase. The intention of this test is to
confirm the usability of the system. This test does not, like the exploratory and assessment
test, take place in the middle of the design phase. Typically the validation test takes place at
the end design phase.

Objectives

The primary goal of the validation test is to validate the usability, against some predefined
performance criteria or benchmark, competing products, etc. Another idea with the validation
test is to make an integrated systems test where all the modules of the system are working
together for the first time. Still another purpose of the validation test is to insure that there is
no major flaws/problems in the system that then could force a recall of the product.

Methodology

Prior to the test the predefined criteria has to be formulated (what and how well the system
should act). When this is done the criteria’s for passing these earlier mentioned benchmarks or
standards have to be defined. This could for example be to say that 70 percent of the
participants have to complete a task within a given time limit. Prior to the test it is also
necessary to define the actions that will be taken if one or more of the tasks should not meet
the standard.

During the test there will be very little or no interaction between the test participant and test
monitor. This test is similar to the assessment test where the test participant has to conduct
some give tasks. The central focus here is also on collecting quantitative data.

 Usability Tests 19

Overview of the Tests and the Development Cycle
This section presents a short overview of the above presented test types. Figure 1 presents a
graphical overview of the different test together with an indication of when to use in the
system development. This was introduced by [LBL].

User/Needs
analysis

Preliminary design

Specification of
requirements

Detailed design

Exploratory test

Heuristic evaluation

Assessment test

Validation testSystem
implementation

System release

Figure 1 : Overview of the different types of test and where in the
development they are used [LBL].

The first test is the exploratory test, which is conducted in the initial design phase. It has the
purpose of giving some initial idea’s about the users behaviour patterns and pros/cons of
existing technologies. Next is the heuristic evaluation, which is used to find the usability
problems in the preliminary design/mock-up. There is also conducted a heuristic evaluation
when all of the detailed design has been implemented. The purpose here is again to find the
usability problems. At the same time as the second heuristic evaluation is performed an
assessment test is also conducted. The purpose of the assessment test is to evaluate the
functionality of the intended design. At last there is the validation test that will evaluate if the
usability goals for the system has been fulfilled.

 KQML 20

D. KQML
This appendix describes the agent communication language KQML. It is based on the
following papers: [YL], [TF], [RF] and [DM].

Why use KQML?
A reason for selecting KQML (Knowledge Query and Manipulating Language), as the agent
communication language is that this is one of the most widely used agent communication
standards [YL]. There are also a great variety of common known applications that already
uses KQML as the communication language (JATLite, JAFMAS, Jackal etc.). Furthermore
the KQML has shown to fulfil the needs and demands for the agent communication language
used in this project.

The need for a common language is equally important in the communication between humans
and in the communication between agents in a multi agent system. The reason is that the
agents (and humans) must share a common language in order to be able to exchange
information and knowledge. The agent language must naturally obey some common syntax
rules, but furthermore the agents need to share a common understanding of knowledge in
order to interpret their messages: They need a shared ontology.

Intelligent agents are typically able to express their beliefs, desires and intentions. This means
that the language used should be able to handle a communication that consists of these issues.
One way to obtain this sort of communication is through conversations and speech acts, which
in contrast to simple message parsing allows agents to express their beliefs, desires and
intentions in a dialogue with other agents. A simple example of a dialogue could be:

• Agent A asks agent B about the price of a product that B according to A should know.
• Agent B can then within the same speech act either give A the product price, ask for

additional information about the product or say that the information is not in agent
B’s knowledge database.

As it can be seen the speech act can take several turns. The speech act will typically be
terminated if agent B knows the answer immediately or if agent B does not know the answer
at all. If agent B on the other hand need some more details about the product then it is
possible to ask agent A about additional information about the query.

The agents also need to know how to communicate with other agents. This implies where and
how to find other agents to communicate with.

 KQML 21

The issues mentioned need to be dealt with by the agent communication language. One
answer to the issues can and will in this project be the use of KQML.

The KQML Language
KQML is an agent communication language that focuses on an extensible set of KQML
messages defining some permissible speech acts. A KQML message is called a performative
(the message is intended to perform some action by virtue of being sent). The reserved
performatives given by [TF] are not meant to be a closed set of performatives; an agent that
uses KQML will typically only understand a subset of the reserved performatives and it is
possible to make additional performatives if necessary. The only constraint is that
performatives that are already defined in the KQML standard must satisfy the given
specifications.

There are three layers in a KQML message (see Figure 2):

• Communication layer: This layer takes care of the low level communication of a
KQML message (typically by the use of TCP/IP).

• Message layer: The message layer contains the KQML performatives.
• Content layer: This layer holds the content of the communication. The language used

in the content layer is variable (specified by the communicating agents) and is
specified in the message layer.

Content

Message

Communication

Figure 2 : The three layers into which the KQML

language can be divided. It consists if
the communication layer, the message
layer and the content layer [DM].

Each performative is expressed as an ASCII string by the use of a Lisp-like syntax (balanced
parenthesis list). The first word in the message specifies the performative type followed by a
number of expressions or parameters each beginning with a keyword.

When using KQML an agent appears as if it manages a knowledge base. This knowledge base
is not necessarily structured as a knowledge base, and this therefore calls for a translation of

 KQML 22

this representation. This translation into a knowledge base abstraction is called the Virtual
Knowledge Base (VKB) of an agent. KQML is the language used to communicate the
contents of an agent’s VKB.

The KQML (and other agent communication languages) is used to express agent beliefs,
desires and intentions. The communication is done through speech acts, which makes it
possible for agents to carry out a simple dialogue (opposite to single message parsing) given
by some predefined performatives. The performatives given by the KQML standard are
introduced in the performatives section. The agent communication can be done in several
ways when using KQML and the possibilities are described in the following section. The
subsequent section will present the KQML language in details along with some examples of
KQML messages. There are a number of keywords in a KQML message, which are described
in the performative parameters section.

Performative Parameters

A KQML message is composed from a number of parameters and these parameters are
identified by some given keywords. These parameters contains the content of the performative
together with some additional information that describes the content and maybe the sender
and receiver of the performative. The meanings of the most common performative parameters
are presented in the table below [TF]:
Keyword Meaning
:receiver The receiver of the performative.
:sender The sender of the performative.
:content The information about which the performative expresses an attitude.
:reply-with Indicates whether the sender expects a reply, and if so, a label to be

used for the reply.
:in-reply-to The expected label in a reply (given by the :reply-with

parameter).
:language The name of the representation language of the :content

parameter.
:ontology This parameter defines the name of the ontology used in the

:content parameter. The agents must as already mentioned use a
shared ontology in order to agree upon the meanings of the
:content field (e.g. a term like “agent” can have different
meanings depending on the semantics: software agent, CIA agent, etc).

The parameters presented above are reserved in a way that any use of them must be consistent
with the meaning in table above.

 KQML 23

Communication Example

The performative parameters and their use will now try to be exemplified. This is done by an
example of how the communication between to agents may take place. Therefore is there
below given an example of a speech act between two agents:
(a)

(ask-one

:sender joe

:content (PRICE IBM ?price)

:receiver stock-server

:reply-with ibm-stock

:language LPROLOG

:ontology NYSE-TICKS)

(b)
(tell

:sender stock-server

:content (PRICE IBM 14)

:receiver joe

:in-reply-to ibm-stock

:language LPROLOG

:ontology NYSE-TICKS)

[RF]

The above speech act consists of two performatives. The first performative is agent “joe” that
asks “stock-server” about an IBM stock price. The “ask-one” performative tells the receiving
agent that agent “joe” wants only one answer to the question given in the :content field.
The second performative (“tell”) is used to indicate that the contents of the message is in the
sender agent’s Virtual Knowledge Base (VKB). As it can be seen the label for the speech act
is given by the :reply-with parameter as “ibm-stock”. The ontology and language are
both defined by the sender agent.

Performatives

Agents communicate via a standard set of KQML performatives, which specify a set of
permissible actions that can be performed on the recipient agent.

In the KQML specification no less than 42 reserved performatives are defined. These
performatives will not be described in details here but a deeper description of the single
performatives can be found in [TF].

Performative names can be thought of the actions to be done with the content of the KQML
message. These performative names are also reserved in the same respect as the reserved
performative parameters. Below there is a presentation of the performatives together with a
presentation of the main groups, which the performatives can be split into:

 KQML 24

• Basic informative performatives is a way to communicate information. The three
informative performatives are tell, deny, and untell. The tell performative returns
positive information and deny returns a negative response. The untell performative
specify that once true information is no longer true.

• Basic query performatives are used to ask other agents for information. There are seven
basic query performatives. They are evaluate, reply, ask-if, ask-about, ask-one,
ask-all, and sorry. The evaluate performative asks for a simplified representation of
the information in the :content field and reply can be used to return this representation.
The ask-if performative asks if the agent know anything about what is in the :content
field. The ask-about performative is the same as the ask-if performative except that its
response is all of the recipients knowledge about what is in the :content field. The ask-
one and ask-all performatives are almost the same as the ask-if and ask-about
performatives. The difference is that they have an additional field to ask for more specific
information. At last the sorry performative specifies that sender understands the request,
but has no answer.

• Multi-response query performatives are used to get several response oppose to one
response in the basic query performatives. The two multi-response query performatives
are stream-about and stream-all. The stream-about and stream-all performatives
are equal to the ask-about and ask-all performatives except that they are asking for a
series of performatives instead of a single performative with all of the information.

• Basic effector performatives are used to attempt to change the state of the receiver.
There are two effector performatives, achieve and unachieve. The achieve
performative which requests that the recipient try to make the sentence in the :content
field true. The unachive performative which is a response to the achieve request if the
operation was not successful.

• Generator performatives are like multi-response query performatives used to get
information and these are standby, ready, next, rest, discard and genetator. The
standby performative asks the receiver agent to prepare its response. When the receiver
agent has prepared the information then it uses the ready performative. The sender will
then use the next performative to get one of the prepared response or the rest
performative to get all of the prepared/remaining responses. There is also the discard
performative, which the sender can use to cancel the remaining responses. The generator
performative is like the standby performative with an additional field to ask for more
specific information.

• Capability-definition performatives are used to advertise agents’ capabilities. The only
capability-definition performative currently is the advertise performative which
indicates that the sender is suited to process the performatives in the :content parameter.

• Notification performatives are used to keep the sender up to date on the state of
something. The notification performatives are subscribe and monitor. The subscribe

 KQML 25

performative indicates that the sender wishes the recipient to tell it about future changes
and maybe new data. The monitor performative is much like the subscribe performative
with an additional field specify more specific information.

• Networking performatives make it possible to pass directives to underlying
communication layers. The networking performatives are currently register,
unregister, forward, broadcast, pipe, break and transport-address. The first
networking performatives is register which indicates that the sender can deliver
performatives to the agent named by the :name parameter. Next is unregister that is the
same as deny of a register. Forward indicates that the sender wants the :to agent to
process the performative in the :content as if it came from the :from agent directly. The
broadcast performative indicates that the sender agent wants the receiver agent to route
the broadcast performative to each of the agents other agents in the system. The pipe
performative tells that future messages to a given agent shall be routed to the :to agent as
if the :to agent and the :from agent were directly connected. The break performative is
used to break a pipe. At last there is the transport-address is used to define an
association between a symbolic name for a KQML agent and a transport address.

• Facilitation performatives are used to acquire the services of another agent in some way.
There is six facilitation performatives and these are broker-one, broker-all,
recommend-one, recommend-all, recruit-one, recruit-all. The broker-one and
broker-all performatives are used to process the request through one or all particularly
suited agents. The recommend-one and recommend-all performatives are used to get the
name of one or all the possible agents suited for the task. The last two performatives,
recruit-one and recruit-all, are like the broker-one and broker-all performatives
except the agent’s responses are sent back to the original sender directly.

Now after having introduced the performatives, there will be an example of how these
performatives actual works in a communications act.

Communication Between Agents
In the foregoing section the performatives by which agents communicate where introduced
together with the necessary performative parameters. After this introduction there will now be
a presentation of how they can be used in the communication between agents. But before that
happens there will be a short introduction to some possible agent communication protocols
and after that there will be a presentation of the possible ways agents can contact and
communicate with each other by the use of the performatives presented.

 KQML 26

Communication Protocols

There are a lot of information exchange protocols that can be used within agent
communication. These protocols can be split into synchronously and asynchronously
transactions. A synchronously transaction is where a client sends a query to a server and then
waits for reply. Asynchronously transactions are where a client subscribes to a server’s
output. Messages can also be broadcasted out to a number of hosts instead of sending it to a
specific host.

Agent Communication

There are several types of agent communication that can be used when agents have to
communicate. It ranges from simple point-to-point protocol to more complex types that
include the use of a facilitator agent.

A facilitator agent is an agent that maintains a registry of service names; forward messages to
named agents or provide matchmaking services between information providers and clients.

Below there will be a presentation of five different types of agent communication. The
presented communication uses a number of the above presented performatives to
communicate the necessary information around. The list below presents the five different
performatives used in the communication examples in this section.

• Ask
• Subscribe
• Broker
• Recruit
• Recommend

The communication examples below are based on a case where an agent A wants to get an
answer to a question X. The answer to agent A’s question is located in agent B knowledge
base. Now to solve this task the agents can use the available facilitator agent F.

The fist type to look at is the simple point-to-point communication where an agent is aware of
the other agents’ existence and vice versa. If this is the case the agent has the possibility e.g.
performing a query to another agent to get some information. This is also seen in Figure 3,
where agent A sends an ask performative to agent B, which replies to A with a tell
performative. In this case the facilitator agent F is not used.

 KQML 27

Facilitator agent
 F

Agent
A

Agent
B

1. ask(X)

2. tell(X)
Figure 3 : Point-to-point communication between the agents A and B.

However if the is agents are not aware of each others existence or about which agent that may
have the answer to a given question it is possible to use a communication like the one in
Figure 4. In this example the agent A, which is seeking an answer to the question X uses
subscribe to request the answer to its question from the facilitator agent F. Now the facilitator
will tell agent A the answer as soon it gets aware of it but the only way for the facilitator to
get the answer is to let agent B update the knowledge base of the facilitator. When this has
happened the facilitator will then tell A the answer.

Facilitator agent
 F

Agent
A

Agent
B

1. subscribe(ask(X))
2. tell(X)

3. tell(X)

Figure 4 : In this example of agent communication A asks F to monitor for

changes in its knowledge base.

Another possibility instead of subscribing on the answer to the question from the facilitator is
by letting agent A ask the facilitator to find an agent that can answer agent A’s question. This
is done by letting agent A use the broker performative like on Figure 5. When the facilitator
receives the advertise from agent B telling its ability to answer A’s question the facilitator will
ask agent B about the answer. Agent B will then tell the answer to the facilitator, which then
tells agent A the answer.

 KQML 28

2. Advertise(ask(X))

Facilitator agent
 F

Agent
A

Agent
B

1. broker(ask(X))

5. tell(X) 3. ask(X)

4. tell(X)

Figure 5 : Agent A asks via the broker performative F to find an agent that

can perform a given performative.

A slightly different approach to solve the problem with finding an answer to the question of
agent A is by using the recruit performative as on Figure 6. Here agent A informs the
facilitator about its interest in getting the answer to its question. The recruit performative that
is used here tells the facilitator to forward the question embedded in the performative to an
agent that possible of answering it. This will in this case be the agent B. The recruited agent B
will now tell its answer directly to the original sender, agent A.

Facilitator agent
 F

Agent
A

Agent
B

3. ask(X)

4. tell(X)

1. recruit(tell(X)) 2. Advertise(ask(X))

Figure 6 : This shows an example of the recruit performative, which is used

to ask F to find an agent that is able to process the embedded
performative.

The last of the five communication types that will be presented is the one shown in Figure 7.
Agent A is still seeking for the answer to its question. To get an answer the agent A asks the
facilitator agent to recommend an agent that advertises that it is able to answer the question.
The facilitator will reply to agent A with the name of the agent that is suitable of answering
the question, in this case agent B. Now that agent A is aware of an agent that can answer the
question it may use the simple point-to-point communication described above where agent A
asks agent B directly for the answer. It is also possible that agent A may sent a subscribe to
agent B so that agent B informs agent A every time the answer to the question changes.

 KQML 29

Facilitator agent
 F

Agent
A

Agent
B

4. ask(X)

5. tell(X)

2. Advertise(ask(X))1. recommend(ask(X))

3. reply(B)

Figure 7 : This figure shows what happens when the facilitator agent receives a

recommend performative.

The above shown examples has made it clear that a main task for the facilitator agent is to
help other agents with finding appropriate agents that can perform the necessary
performatives.

 XML and XSL 30

E. XML and XSL
This appendix will give an introduction to XML and XSL. The XML is designed to describe
and contain data and XSL is the style sheet language of XML and it is used to transform XML
into another document e.g. HTML, XML, PDF, etc.

XML
XML (eXtensible Markup Language) is a standard for representing data. Data is stored as
normal text, where tags surround the data. The tags are named to describe the data. An XML-
element look like this:

<description>data</description>

A start tag and an end tag surround the data. The programmer decides the tag names, so it is a
very open standard. But then again there is some restrictions on how the XML must look like,
which is very strict, not like HTML which is not very sensitive to errors. In HTML the parser
ignores if there is a tag it does not understand, and rarely generate errors, it just displays
something different. If XML encounters an error only an error message is shown. Some of the
restrictions in XML look like this:

• Every start tag must have an end tag.
• Only one tag surrounding the entire XML, the root element.
• XML is case sensitive.
• All tags must be properly nested

Properly nesting look like this:

<program>

<title>News</title>

</program>

Not like this:

<title>

<program>

News

</title>

</program>

An XML-element can contain more XML-elements, like this:

<programlist>

<program>

<id>10224219</id>

<title>Bye Bye Bluebird</title>

<startdate>20010224</startdate>

<starttime>0620</starttime>

 XML and XSL 31

<duration>1:40</duration>

<channel>TV 1000</channel>

<category>Film</category>

<subcategory>Drama</subcategory>

<description>Efter at have boet nogle år i udlandet…</description>

<showview>154878</showview>

</program>

<program>

…

</program>

</programlist>

The top node in this XML-document is the programlist tag and that node contains several
program elements.

There are some escape characters in XML:
Escape character Character Description
< < less than
> > greater than
& & Ampersand
' ' apostrophe
" " Quotation mark

If there is the need of having many of the characters that have to be escaped, then there is the
possibility to insert a CDATA section. Such a section makes the parser able to read the escape
characters without the need to escape them. A CDATA section looks like this:

<![CDATA["

this is the text that will be ignored,

here you can put <<<&&’”<”> all you want

"]]>

These types of section can e.g. be used to insert regions of JavaScript.

The XML-document should start with a tag either describing that this is an XML-file, like
this:

<?xml version=”1.0”?>

Or with a reference to the XSL-file formatting the data, in the client browser, like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

The reference is a reference to a namespace (xmlns) located at some URL.

 XML and XSL 32

XSL
XSL (eXtensible Stylesheet Language) can be used for different purposes, for transforming
the XML-file, sort and filter XML-files and/or format XML-files, e.g. to a HTML-file which
can be viewed in a browser. The XSL-file is stored as an XML-file it self. There are more
possibilities with XSL, but these will not be described here (see [W3] for details). XSL is
actually three different languages [W3]:

• XSLT is a language to transform XML
• XPath is a language to define XML parts or patterns
• XSL Formatting Objects is a language to define XML display

The version of XSL used is MSXML 3.0 from Microsoft; this should be 100% compatible
with the W3C recommendation. For more info see [XML].

The XML-document is build up like a tree, with different nodes in this tree; these nodes are
matched in the XSL-document. First in the XSL-file the root node should be matched, like
this:
<xsl:template match="/">
</xsl:template>

Inside this match of the root node, the start of the HTML can be placed, this is what will be
shown in the browser:
<HTML>

<BODY>
 <xsl:apply-templates select="Programlist">
 </xsl:apply-templates>
 </BODY>
</HTML>

The content of the script tag will be explained later. The interesting tag here is the apply-
templates, this will force the XSL-file to apply the template specified, this template is the
defined later in the XSL-file. The templates match the nodes in the XML-document. This is
the template applied before:
<xsl:template match="Programlist">

<xsl:apply-templates select="program">
 <xsl:sort select="priority"/>

</xsl:apply-templates>
</xsl:template>

 XML and XSL 33

When the Program list node template is matched, there are program nodes available. The
program nodes are then sorted by priority, via. The xsl:sort element. The program elements
will then be applied to another template, like this.
<xsl:template match="program">

<xsl:value-of select="title"/>
<xsl:value-of select="startdate"/>

</xsl:template>

Then finally the value of the different nodes, which is the actual data, is printed out via. the
xsl:value-of element.

XPath

An example of the XPath standard used to reach some specific nodes:
//xsl:apply templates[@select='program']/@select

The // in the start indicates that this is the root of the XML-document, the next “xsl:apply
templates” is the name of the element, which means that this XPath should find the elements
in this XML-tree which has the name “xsl:apply templates”. Notice that the XSL-file is the
XML-tree that is been examined. The next that happens is a filter, filtering out the nodes
which has an attribute (@ means attribute) called “select” which equals “program”. What is
wanted in the end, is the select attributes in all the nodes which is called xsl:apply templates,
which has a “select” attribute that equals “program”.

 Java Servlets 34

F. Java Servlets
Java Servlets are used as a layer to provide answers to HTTP-requests, usually to provide
dynamic content to websites, by providing access to e.g. databases. Java Servlets can be used
instead of other Server side scripting languages like ASP, PHP, etc.

When using Java Servlets it is possible to make session variables, this means that
programming with web pages no longer needs to be stateless, because it is possible to save
variables for a session like in ordinary Java programming techniques. This is not possible in
ordinary HTML programming because variables in e.g. client-side JavaScript is reset each
time the HTML page is called. Session variables can be set and fetched with:

A way of sending data from the client browser to the Java Servlets is by using URL queries,
forms and cookies. These values can also be fetched in the Java Servlets.

The web server used for the website should support Java Servlets, several web servers support
Java Servlets, e.g. Microsoft IIS, Apache and others. Sun who developed Java has also made a
server that supports both HTML and Java Servlets that is open-source. It can be fetched at:
[SUN1]

A Java Servlet differs from an ordinary Java class in several ways. It has to be inherited from
the HTTPServlet super class. Then it has to override the methods:

• initialise
• destroy
• doGet
• doPost

Initialise is called when the Java Servlet is called the first time, then different variables can be
initialised, database connections can be opened, etc. When shutting down the web server, the
destroy method is called, then it is possible to shut down database connections, etc. When the
Java Servlet is called from a browser via a HTTP-request the doGet method is usually called,
the servlet should send back a response as either HTML, XML, etc. When the Servlet is called
from a HTML page where a form has been submitted, the doPost method is called instead of
the doGet method, this way it is possible for the programmer to process the form data.

See Suns homepage for the specifications on Java Servlets [SUN2].

 MySQL Data Types 35

G. MySQL Data Types
This appendix will present the data types used. There are used three different data types in the
databases developed for the inTelly system and these types are:
• VARCHAR
• TEXT
• INT

The VARCHAR is a variable-length string and can be declare to be any length between 1 and
255. VARCHAR only uses as many characters as needed, plus one byte to record the length.
When a VARCHAR column is assigned a value that exceeds the column's maximum length,
the value is truncated to fit.

The TEXT type is a binary object that can hold a variable amount of data. The TEXT type can
have a maximum length of 65536 bytes and requires only as many bytes as there is characters
plus two bytes. If a value is assigned to a TEXT column that exceeds the columns maximum
length, the value is truncated to fit. The TEXT type column can in most respects be seen as a
VARCHAR column that can be as big as 2^16.

In MySQL the keyword INT is a synonym for INTEGER. INT columns are numeric columns
and the range of an INT column is –2147483648 to 2147483647 (2^31) if it is signed. The
unsigned the size of the columns range is the same but the endpoints shifts up to 0 and
4294967295 (2^32). The storage requirement for an INT is 4 bytes. If an INT column is
assigned a numeric value that exceeds the column type's allowable range, the value is
truncated/clipped to fit the appropriate endpoint this resulting value is stored.

 Neural Networks 36

H. Neural Networks
The principles of neural networks will be presented in this appendix. A neural network is at
some level meant to model the functionality of the brain. The neurons in the brain are
connected in a network through which they send and receive electrical pulses. If the
accumulated electrical inputs to a neuron exceeds a certain threshold the neuron “fires”,
which means that the neuron sends out electrical pulses to the neurons connected to the output
of the neuron. The connections between the neurons varies dependent upon how strongly
connected they are. The connections between the neurons are adjusted through a learning
process.

One of the strengths of a neural network is that it can be used in situations where the structure
of some problem is not well defined. An example could be recognition of patterns in a noisy
image (e.g. handwritten letters). This application is called generalisation [NNO]. In such a
case it would be almost impossible to write a normal algorithm that is able to detect the
letters, because people write letters differently and because a person will write the same letter
differently. It is possible to make this pattern recognition in a neural network that has been
trained with a number of letters written by some of persons. In the learning process the neural
network is presented to the training letters and their corresponding result and the weights of
the neural network is adjusted accordingly.

Another typical application of the neural network is to classify data (called abstraction
[NNO]). This means that a neural network is able to classify some input vectors into groups of
stereotypes. (e.g. by the use of Kohonen maps).

In the following sections the generalisation method is considered. There are a number of
learning algorithms of which only back-propagation is considered.

Perceptron
In 1950 Frank Rosenblatt developed a learning algorithm for a single layer network called a
perceptron [GFL, p.666]. An illustration of the perceptron can be seen in Figure 8.

 Neural Networks 37

w1

w2

wm

x1

xm

x2

x0= 1
Bias

f(v)Σwi*xi

Transformation of
the activation

v y
Output

Input

w0

Computation of
the activation

Figure 8 : A sketch of the perceptron.

The parameters in the perceptron are:
Parameter Description
Input (x0, x1, x2, .. , xm) The inputs to the perceptron. The values of each input will in

most applications typically be in the interval between 0 and
1. Notice that the bias input is always 1.

Weights (w0, w1, w2,.. wm) The weights determine the level of connection between each
input and the perceptron. A weight close to 0 will mean that
the connection is weak. The values of the weights can be any
real number.

Calculated activation (v) The activation is calculated by summarising the weighted
input values. This value can be any real number.

Output (y) The output of the perceptron. The output value is a
transformation of the activation. The transformation function
(also called the activity function) is typically one of the
functions illustrated in Figure 9 and the output value interval
is dependent upon the function used.

 Neural Networks 38

Figure 9 : a) The sigmoid (or logistic) activity function. f(x) = 1/(1 + exp(-x)).
b) The hyperbolic tangent activity function. f(x) = tanh(x) = 2 / (1 + exp (-2x)) – 1.
c) The step activity function. Notice that this activity function is not differentiable.

In this project only the sigmoid (or logistic) activity function will be considered. The main
reason is that the sigmoid is typically used as the activity function due to the fact that it has a
simple first derivative, which makes it possible to use the delta rule (see below 0. Delta Rule).
In this project the back-propagation learning algorithm will be presented and used.

Single and Multi Layer Network
A neural net consist of a one or more layers. In Figure 10 there is a presentation of a single
and a multiplayer network. It should be noticed that the number of weight layers in this
project is chosen to indicate the number of layers in the network.

 Neural Networks 39

Input layer

Hidden layer

Output layer

Z W
Hidden weights Output weights

Input

Output

Input layer

Output layer

W
Output weights

Output

Single layer
network

Multi layer
network

Figure 10 : An example of a single layer and a multi layer network (two layers). The number of layer weights
indicates the number of layers in the network. This means that the single layer network consists of
an input layer and an output layer, while there is added one or more hidden layers in the multi
layer network.

The number of layers determines the characteristic of the decision boundary. The decision
boundary is a figure that illustrates a complexity of the relationship between the input and the
output of the neural network. The more layers the more complex input-output relationship
could be achieved in the network. In Figure 11 there are shown three examples of different
decision boundaries [CMB].

a) One layer b) Two layer c) Three layer
Figure 11 : Examples of different decision boundaries. The shape is dependent upon the number of layers in

the neural network. For simplicity the examples presented can be achieved in neural networks
having threshold activity functions (e.g. the step activity function previously shown).

Delta Rule
The delta rule is based upon the idea of an error surface calculated from every possible
network weight configuration. Given some network configuration it is possible to use the
principle of Gradient Decent Learning to find the direction into which the error is reduced

 Neural Networks 40

most rapidly. In order to use the delta rule the activity function most be differentiable, which
is the case for the sigmoid function.

The basis for the delta rule is the mean squared error found by summing the squared error for
each node in the neural network:

2)(
2
1

i
i

i ytError ∑ −=

where ti is the target value for each output node and yi is the actual output of each node. The
training vectors determine the target values. The objective is to find a formula for the rate of
change of the network error as a function of changes in the weights at node i. The change in a
particular weight k can be found by taking the partial derivative of the error at each node with
respect to the weight wk at that node. It can be shown that the result is [GFL, p.672-675]:

kii
k

xvfyt
w

Error ⋅′⋅−−=
∂

∂)()(

where f’(v) is the first derivative of the calculated activation and xk is the input to the weight
k. The minimization of the error must be in the direction of the negative gradient, which
results in the following delta rule calculating the weight adjustment:

kiikii
k

k xvfytxvfyt
w

Errorcw ⋅′⋅−⋅=⋅′⋅−−⋅−=
∂

∂⋅−=∆)()(])()([ηη

η is the learning rate, which defines how much a weight moves in each learning iteration.

Back-Propagation
In a multi layer network the adjustments of the weights is complicated due to the fact that the
network error only can be measured at the output nodes. It is difficult to identify the source of
some error at the output nodes because the error is accumulated over a number of layers in the
network. One solution to this problem is the back-propagation algorithm.

The principle of back-propagation is to propagate the error from the output nodes backwards
through the hidden layers in the network. The back-propagation is based upon the delta rule.
In the adjustment of the output nodes the delta rule is used directly:

kiinkknknk xvfytcWwWW ⋅′⋅−⋅+=∆+=+)()(,,1,

Wk,n+1 is the new value of the output layer weight.

 Neural Networks 41

In order to adjust the hidden layer weights Z it is necessary to make an estimate of the error,
which in the output layer is given directly by ti - yi. The estimate is given by [HA, p.74-75]:

)()(ˆ vfytWe iin ′⋅−⋅=

Wn is the weights of the succeeding layer (e.g. the output layer in a two layer network). This
results in the following calculation of the hidden layers weight adjustment:

knkknknk xvfeZzZZ 2)2(ˆ,,1, ⋅′⋅⋅+=∆+=+ η

Z is the hidden layer weights, f’(v2) is the first derivative of the calculated activation in the
hidden layer note and x2k is the input to hidden layer weight Zk.

The back-propagation algorithm can be used in a neural network with any number of layers.

Training
To train a neural network there is needed a number of input vectors together with the
corresponding output vectors (also called target values). The typical training process is to loop
through the input and output vectors one at a time adjusting the network weights. And when
the last set of vectors have been applied then start over again until some stop criteria is
fulfilled. This is typically when some given maximum summarized mean squared error is
reached on the training vector sets. Another stop criteria could be to stop the training process
after a predefined number of training loops (e.g. 20000), but this solution will not ensure that
the error has some well-defined maximum level at the end of the training. On the other hand
the first stop criteria can in some situations take very long time to reach. It is therefore
appropriate to combine the two stop criteria so that the training process is stopped when one
of them is fulfilled.

 Bayesian Networks 42

I. Bayesian Networks
This appendix is primary based upon [FVJ], [HUGIN] and [SA].

Introduction
Bayesian networks are also called Bayes nets, causal probabilistic networks (CPNs), Bayesian
belief networks (BBNs) or simply belief networks. Bayesian networks are used to model
domains that are characterized by uncertainty.

A Bayesian network consists of a set of nodes and a set of directed edges (arrows) between
these nodes. Edges reflect cause-effect relations within the domain. These effects are
normally not completely deterministic (e.g. disease -> symptom). The strength of an effect is
modelled as a probability:

If B then P(A) = 0.75
If C then P(A) = 0.65

It is possible to read the above as a rule, but this is not correct therefore a different notation is
used:

P(A | B) = 0.75
P(A | C) = 0.65

It is possible to combine the two above causes. This means that there is needed a specification
of the conditional probabilities:

P(A | B, C)

Where B and C each can take the states yes and no. In order to build up a Bayesian network it
is necessary to specify the strength of all combinations of states for the possible causes in all
the nodes.

Fundamentally, Bayesian networks are used to update probabilities when information comes
in. The mathematical basis for this is Bayes' theorem:

P(A | B)P(B) = P(B | A)P(A)

Qualitative and Quantitative Representation
An example of a simple Bayesian network is given in Figure 12.

 Bayesian Networks 43

B C

A

Figure 12 : A simple Bayesian network. The A node has
two parent nodes: B and C. The direction of
the edges represents the casual
dependencies (from B to A and from C to A).

The graphical representation of the Bayesian network is the qualitative representation of a
Bayesian network. There is also a need to specify the quantitative representation. An example
of the quantitative representation is given in the following tables:

P(B)
B = true B = false
0.3 0.7

P(C)
C = true C = false
0.6 0.4

P(A|B,C)

C = true C = false
B = true B = false B = true B = false

A = true 0.75 0.55 0.95 0.15
A = false 0.25 0.45 0.05 0.85

Given the qualitative and quantitative representation makes it possible to propagate evidence
it the Bayesian network.

Propagation of Evidence
To propagate evidence in a Bayesian network a method given by [SA] and [HUGIN] is used.
The Bayesian network is transformed into a junction tree in which all calculations are
performed rather than in the original Bayesian network. The method collects the nodes in set
of nodes called “cliques” separated by “separation sets”. The transformation consists of four
steps [SA, p.26-27]:

 Bayesian Networks 44

1. Generation of a moral graph. The graph is made by adding links between all parents
of each node. All directions indicated by the arrows are removed.

2. Triangulation of the moral graph. A graph is triangulated if all loops with length > 3
have a chord. There should be added links (undirected) until this is achieved.

3. Form the cliques. A clique is the largest set of nodes that are all mutually connected
after the triangulation. The probability tables of each clique are initialised as the
product of the relevant quantitative data.

4. Form the junction tree. The junction tree is made by connecting the cliques such that
the connections form a tree with a junction tree property. This means that if two
cliques contain a common set of nodes then all cliques on the path between them must
also contain the same set of nodes.

Before there can be propagated evidence in the junction tree the cliques and separation sets
need to be initialised [SA, p.27-29]:

• Clique initialisation: The clique is a table based upon the given quantitative data. The
clique is initialised by calculating the marginal probability distribution of any of the
nodes in the cliques.

• Initialisation of the separation sets: Each link in the junction tree has a separation
set. The content of the separation set is joint probability distribution for the nodes that
are common to the two cliques joined by the link.

It is now possible to propagate evidence in the junction tree. The overall principle in the
propagation is to update the clique where some evidence is known and propagate the result to
the other cliques through the separation sets.

Example
In this section there is a presentation of calculations on a simple Bayesian network. In Figure
13 the Bayesian network is illustrated.

D1 D2

S1 S2

Figure 13 : Bayesian network. D1 and D2 could e.g.

represent two different deceases. S1 and S2
could represent two different symptoms.

 Bayesian Networks 45

The quantitative data is given in the tables below:

P(D1)
D1 = true D1 = false
0.1 0.9

P(D2)
D1 = true D1 = false
0.05 0.95

P(S1|D1,D2)

D1 = true D1 = false
D2 = true D2 = false D2 = true D2 = false

S1 = true 0.7 0.6 0.9 0.2
S1 = false 0.3 0.4 0.1 0.8

P(S2|D1,D2)

D1 = true D1 = false
D2 = true D2 = false D2 = true D2 = false

S2 = true 0.4 0.1 0.9 0.3
S2 = false 0.6 0.9 0.1 0.7

The moralisation of the graph is presented in Figure 14. The directions of the edges are
removed and there is added a link between the parent nodes.

D1 D2

S1 S2

Figure 14 : The moralised graph.

The graph is triangulated without adding further links (there are no loop with a length > 3). In
Figure 15 the resulting cliques and junction tree is presented.

 Bayesian Networks 46

D1
D2
S1

D1
D2
S2

C1

C2

S D1
D2

Figure 15 : The resulting junction tree containing

of two cliques (C1 and C2) and one
separation set (S).

The separation set connecting the two cliques consists of two nodes: D1 and D2. The next
step is to initialise the cliques and the separation set:

C1
 S1
D1 D2 true false
true true 0.0035* 0.0015**
true false 0.057 0.038
false true 0.0405 0.0045
false false 0.171 0.684

The calculations are:
*: P(D1=true) * P(D2=true) * P(S1=true|D1=true,D2=true) = 0.1 * 0.05 * 0.7 = 0.0035
**: P(D1=true) * P(D2=true) * P(S1=false|D1=true,D2=true) = 0.1 * 0.05 * 0.3 = 0.0015
etc.
As it can be seen the quantitative data are used in the clique initialisation.

C2
 S2
D1 D2 True false
true true 0.002 0.003
true false 0.0095 0.0855
false true 0.0405 0.0045
false false 0.2565 0.5985

 Bayesian Networks 47

The initialisation of the separation set S is determined by marginalizing one of the adjoining
cliques (C1 or C2):

S
D1 D2
true true 0.005
true false 0.095
false true 0.045
false false 0.855

If some evidence is found then it is possible to propagate this into the junction tree. One
example: It is given that S1 = true. The first step is to update and normalise the clique
containing the S1-node (C1):

C1
 S1
D1 D2 true false
true true 0.0129* 0
true false 0.2096 0
false true 0.1489 0
false false 0.6287 0

*: 0.0035 / (0.0035 + 0.057 + 0.0405 + 0.171) = 0.0035/0.272 = 0.0129
etc.

The resulting C1 is then propagated into the separation set:
S’
D1 D2
true true 0.0129
true false 0.2096
false true 0.1489
false false 0.6287

Finally the evidence is propagated to the clique C2 by multiplying C2’s table by the ratio
between the new separation set (S’) and the old separation set (S):

C2
 S2
D1 D2 true false

 Bayesian Networks 48

true true 0.0052* 0.0077
true false 0.0210 0.1886
false true 0.1340 0.0149
false false 0.1886 0.4401

*: 0.002 * 0.0129 / 0.005 = 0.0052
etc.

It is now possible to determine the probability of S2:
P(S2=true) = 0.0052 + 0.0210 + 0.1340 + 0.1886 = 0.3488

From the above example the principles of the creation and propagation of evidence in a
Bayesian network is presented. In order to use the Bayesian network both a quantitative and a
qualitative representation is needed. When the junction tree has been developed and the
cliques and separation sets have been initialised it is possible to propagate evidence in the
network.

 Competing Products 49

J. Competing Products
The different competing products are presented in this appendix. There will be looked at the
well-known paper TV-guides, Text TV and Internet TV-guides as competing products. There
are been made some definitions to clarify what is meant if e.g. there is talked about a
program. These definitions are seen in the list below:
• Channel – TV-station, e.g. DR1, TV 2, 3, 3+, etc.
• Program - A TV-Program at a station, e.g. X-files.
• Category - The type of a program, e.g. movie, documentary, etc.

Paper TV-guides
There are two main groups of paper TV-guides, which will be inspected in this section. The
first is the newspaper and the other the magazines only containing TV-programs.

Newspaper

The newspaper TV-guide normally list their TV-programs in columns close to each other
which makes it possible to put a lot of programs into one page. This type of TV-guide is good
to give a quick view over a lot of stations. Another good thing about the newspaper is that it
can be used when sitting in front of the TV. This sort of TV-guide normally contains no
details about the programs or if there should be any details, these will only be concerning very
few of the TV-programs. It is also only a few newspapers that contain a weekly overview of
all the TV-programs for the next seven days. One of the negative sides about a newspaper is
that it cannot be updated after they are printed.

TV-magazine

These other types of paper TV-guides are as the newspapers easy to overview and can also
give a fast overview of a lot of channels. Normally these TV-magazines includes a 7-(14)
days program and not as the newspaper only one day. These magazines also have a simple
daily structure and there are presented more details about more TV-programs. This 7/(14)
days program is a good idea when going on vacation and the VCR has to be programmed
before going but again as with the newspaper you cannot be sure about them because they
cannot be updated after they are printed.

Text TV as TV-guide
The text TV is also a source for finding what is coming on TV. The text TV is a part of each
channel and the data presented there is only for one or two channels. Therefore it is necessary
to change station for each channel there should be checked. The text TV is slow, because it
has to run through all pages to find the one page containing the TV-programs. Here there is

 Competing Products 50

also only a few of the programs the has attached details and if the user want to view these
he/she has to change page e.g. press 311 to see details about one program, this is not intuitive.

A positive thing about text TV is that it is located where you need it, in front of the TV.
Another thing about the TV-guides on the text TV is that they are always updated because the
TV-stations can edit them all the time. Another advantage is that the text TV is simple to use
as long as the user just wants to get an overview of the days TV-programs. An example of this
is seen in Figure 16.

Figure 16 : A screen dump of DR’s text TV.

Internet TV-guides
There are two main types of Internet TV-guides. The first is the TV-guide that belongs to a
specific channel/station only showing this stations/channels programs. The other type is the
independent TV-guide, which is not attached to a specific channel. An advantage of these
Internet TV-guides is that they are available online at all times and that they are easily
updated.

TV 2

The TV-guide at TV 2, do not only contain data for their own channel but also for many other
channels. You find this TV-guide at http://tv.tv2.dk/ or see Figure 17. As most Internet TV-
guides it has a program list and a filter with the following options:

 Competing Products 51

• Channel: All channels, dr1, dr2, etc.
• Time: Today, tomorrow, 2., 3., …, 7. day; All day, 0-6, 6-12, 12-18, 18-24
• Category: All categories, children, documentary, movies, lottery, news, series, etc.

There is a search facility for searching in all programs for the next week. It also provide a TV
right now option that makes it possible to see what is shown right now on TV.

The front page also contains a shortcut to a page with the numbers of viewers for the last
seven days on all the Danish channels. At last TV 2 also have very detailed description on
programs shown by them, on their own homepage.

Figure 17 : The front page of TV 2’s TV-guide.

Billed-bladet

This TV-guide is found at http://www.billed-bladet.dk/tv.php3 and a screen dump presenting
the front page can be seen at Figure 18. It contains data for about 60 channels. The first that is
presented to the user when arriving to the site is a list of programs from Danish channels,
which are being shown right now. It is possible to change this list of programs by using the
filter shown to the left of the program list. In this filter it is possible to choose which time to
view: Divided into two select boxes; one with the next seven days and one with: morning,

 Competing Products 52

afternoon, evening, the rest of the day, rest of the week, right now, all day. It is also possible
to choose which category of programs to view like movies, sport, etc. At last there is the
possibility of choosing which channels to view and this is divided into language (Danish,
German, etc.) or channel type (Movies, Sport, etc.).

An additional functionality on the page is the search facility that makes it possible to search
the next seven days for some specific keyword. There is also the possibility of getting a short
description of the program and/or to see the show view code for the program if any. This TV-
guide has also the possibility of creating individual user profiles. When creating such a user
profile the user first have to define if he/she is an expert user or novice user. Next step is
choosing the time of day and the weekday that is of interest. Last step is to choose the
channels and categories, which is done by a great number of checkboxes. This user profile is
then saved as an individual defined shortcut and presented on the right side of the site. It is
possible to have more than one of these individual defined shortcuts to different settings
concerning channels, time, search words, etc. The programs that these shortcuts result in can
be emailed to the user each morning. There are also predefined shortcuts: Movies right now,
Sports right now, Danish television right now, Billed-bladet recommends.

Figure 18 : Billed-bladet’s TV-guide presenting the Danish programs that are shown right now. The description
and show view code is also shown.

 Competing Products 53

Teledanmark

The TV-guide from Teledanmark is found at http://www.kabeltv.dk/HTML/guide/cgi/
guide.tvg?function=search and a screen dump can be seen at Figure 19. This TV-guide has
about the same functionality as Billed-bladet’s TV-guide. There is a filter where it is possible
to select the time of day, the day, the channel and the category. There is a search facility and a
short description is shown per default but this TV-guide at Teledanmark does not have the
show view codes. The Teledanmark TV-guide also differs from Billed-bladet in their way of
using the user profile. It is only possible to have one profile and when you create such a
profile there is added the following to the filter:
• Channels - My channels
• Time - My time
• Category - My categories

The My channels and My categories options gives a number of predefined channels and
categories that can be selected from a list. Here it is also possible to see which channels are
available in which areas. In the My time option it is possible to specify the timeslot right as
the user wishes, (e.g. 18.00-23.00), instead of using the predefined timeslots like 06-09, 09-12
etc.

Figure 19 : Teledanmark’s TV-guide showing program data for a logged in user.

 Competing Products 54

Ritzaus medieservice

Another Internet TV-guide is Ritzaus medieservice, which is located at http://www.rmas.dk/
or see a screen dump at Figure 20. This site has the same standard features as the two above-
mentioned TV-guides with a program list and a filter. The filter has the following options:
• Channel: All channels, DR1, DR2, etc.
• Time: A graphical calendar
• Category: All categories, Common, children, documentary, business, erotic, movies, etc.

Beside the above-mentioned filter options there is also a search facility to search in this weeks
programs.

Besides the TV-guide, Ritzau also has a media service, which makes information about the
different programs on all stations available for other sites/TV-guides, and they offer a direct
connection to their database. It is also possible to make a personal homepage with a TV-
guide.

Figure 20 : The TV-guide at Ritzaus medieservice.

 Competing Products 55

Suggestions for Our TV-guide
Now having looked on a number of TV-guides there will be looked upon what might be used
from the different TV-guides. The above studied TV-guides showed that there should be a
program list and a filter menu together with some additional functions. The first thing to look
upon is the filter, which should contain some or all of the options listed below:
• Channels - My channels, All channels, DR1, DR2, etc and these should be divided into

language (Danish, English etc.) and categories (Movies, Sport, etc.).
• Categories - My categories, All categories, children, documentary, movies, lottery, news,

series, sports, entertainment, nature (the categories are mainly decided by the service that
provides the TV-program data)

• Time of day - All day, 0-6, 6-12, 12-18, 18-24, the rest of the day, right now
• Date - Today, Wednesday, Thursday, …, Monday, rest of the week

The additional functions that could be present at a TV-guide is:
• Search facility
• Sorting by time, channel, category
• Details: On/Off
• Show view codes: On/Off
• Shortcuts to newsgroups concerning TV

The possibility of creating some sort of individual user profile could also be made. This will
give the user the possibility of adjusting the TV-guide to fit his/hers needs. This user profile
might contain the following:
• User type definition (expert user, novice user)
• Channels
• Categories
• Time of day
• Weekdays
• Keywords
• E-mail TV-programs

 inTelly Homepage 56

K. inTelly Homepage
In this appendix there will be a short presentation of the inTelly systems homepage. The page
can be found at the address: http://inTelly.dk/project or a screen dump of the front page can be
seen at Figure 21. The web site is available in both Danish as well as English.

The idea with the inTelly.dk homepage is used to present the inTelly project. The purpose of
the web site is to provide information about the project and its development throughout the
project period. Another intention with the homepage is also to get in touch with the possible
users of the inTelly system. The first contact with the users is done in the initial design phase
where there has been developed a questionnaire that is used to gather information about the
users and their habits concerning news reading and find interesting TV-programs. The result
of this questionnaire is presented on the homepage because this helps to keep in touch with
the users that participated in this first exploratory test.

Figure 21 : The inTelly.dk homepage.

The homepage is also used to show the different prototypes that are developed during the
iterative design phase so that the possible users has the possibility to commenting on the
design without participating in one of the four test where the users were involved.

 ZIP Stat - Statistics for inTelly.dk 57

L. ZIP Stat - Statistics for inTelly.dk
This appendix will present the statistical data collected by ZIP-Stat (for more details see
[SM]) about the inTelly.dk website. ZIP-Stat is a free web statistics service that collects a
number of data about the user when he/she enters a given site. The data is used during the
design of inTelly.dk to define the most used browsers and resolutions. First there will be
presented data about the browsers used and next the screen resolutions are presented.

Browsers
The percentage of the different browsers used to access the inTelly.dk website is seen in the
table below. It is seen that the Microsoft Internet Explorer 5.X is most used browser followed
by Netscape 4.X.

Browser Hits Percent Graf

MSIE v5.X 314 81%
Netscape v4.X 63 16%
MSIE v4.X 6 1%
Other browsers 4 1%

Resolution
The different screen resolutions used by the users presented are presented below. It is seen
that the widely used resolution is 1024x768 that scores 61%. The second most used resolution
is 800x600 and this scores 14%.

Resolution Hits Percent Graf

1024x768 238 61%
800x600 56 14%
1280x1024 32 8%
Other 14 3%
1152x900 13 3%
1152x864 9 2%
640x480 7 1%
1280x960 4 1%
1600x1200 3 0.8%
1152x870 3 0..8%

 ZIP Stat - Statistics for inTelly.dk 58

1280x976 2 0.5%
800x572 2 0.5%
1280x998 2 0.5%
1152x816 2 0.5%

 ZIP Stat - Statistics for inTelly.dk 59

SSUUPPPPLLEEMMEENNTTSS

 User Interface Version 0.1 60

M. User Interface Version 0.1
This supplement will present the first mock-up of the user interfaces. The arguments for why
the user interface is designed the way it is, is presented in the Main report – 16. inTelly
Version 0.1.

Create User
The create user interface (see Figure 22) is where a new user has the possibility of registering
him or her self. The user has to type in a username and password. The password has to be
typed in twice to assure its correctness. The user presses the create user button (Danish:
“Opret bruger”) and the user is the created.

Figure 22 : Screendump of create user screen

When the user tries to create a user with an already existing user name this will return an error
message and give the user the possibility of trying again (see Figure 23).

Figure 23 : The create user screen where the user has tried to create him/her self with an existing username.

 User Interface Version 0.1 61

User Profile
When a user has been created, he or she has to fill out the user profile to use the features of a
registered user. The user profile consists of a front page (see Figure 24) describing the user
profile and its purpose and six pages containing data.

Figure 24 : The user profile front page.

The first page containing data is the page called personal data where the user enters some data
about him or her self (see Figure 25).

Figure 25 : The personal data page from the user profile.

 User Interface Version 0.1 62

In Figure 26 the channels page is presented. Here the user has the possibility of selecting the
channels that he/she wants to get TV-programs presented from. The user is having the option
of choosing the specific channels one by one or choosing a whole group of channels.

Figure 26 : The user profile page where the channels have to be set.

The next page in the user profile is the categories page (see Figure 27) where the categories
that interest the user can be chosen. It is here again possible to choose the categories one by
one or all at once.

 User Interface Version 0.1 63

Figure 27 : The categories page in the user profile.

Next is the Repeaters page (see Figure 28) where the user gets the repeating programs
presented. The user has here the possibility of selecting the programs that is interesting for
him/her and there is also the possibility of deselecting the programs that are of no interest.

Figure 28 : The Repeaters page where the user can select/deselect programs that he/she wants to see or not.

 User Interface Version 0.1 64

The fifth page is the keyword page (see Figure 29) and here the user can type in keywords
that he/she wishes the system to look for in the title or description of the program.

Figure 29 : The keyword page in the user profile.

The last page in the user profile is the set-up page (see Figure 30) where the users can set-up
details of how the program list should be presented. It is possible to choose the columns that
should be presented, which page of the TV-guide that should be the start page and how the
date and time should be presented to the user.

Figure 30 : Set-up page.

 User Interface Version 0.1 65

Programs List
This is the main page in the TV-guide. The user gets the TV-programs presented at this page.
The user has the possibility of filtering the program list by use of the filter presented at the left
side of the page. Additional functionality on the program list is the notepad and prioritising
functionality. The notepad shall help the user to remember what to see and the prioritising
functionality is used to personalise the TV-guide. This is also used to hide the programs that
do not interest the user. There is a description of the program available but this varies from
mock-up to mock-up and will be describe in connection with the description of the single
mock-ups. At last there is a search feature that make it possible to search for programs.

Below there is presented different mock-ups of the program list. The first mock-up presented
(see Figure 31) is where there is a short description available for all programs and where the
user can prioritise the programs by the use of three radio buttons. The hidden programs are
presented below the dotted line. These are hidden if the hidden select box (Danish: “Vis
skjulte”) is selected. A colouring of the radio buttons is tried out.

Figure 31 : A mock-up of the possible program list.

The next mock-up (see Figure 32) is almost the same as the interface presented above. The
difference is the way of prioritising programs and the description. The way of prioritising has
changed from the three radio buttons to two icons, where “√” indicates Want to see and “X”
indicates Does not want to see. The programs that are evaluated “Want to see” are placed on a

 User Interface Version 0.1 66

separate notepad page (see Figure 34). At the right side of the program list there has now been
added an area where the detailed description for a program is presented and the text presented
is decided by the position of the mouse pointer.

Figure 32 : Another program list mock-up with integrated detailed description.

 User Interface Version 0.1 67

Next is a mock-up that is very identical to the one above (see Figure 33). The difference in
this mock-up is that the integrated notepad now has moved to the frame where the detailed
description was earlier. The detailed description can be seen by clicking on the title of the
program.

Figure 33 : Program list mock-up with integrated notepad.

 User Interface Version 0.1 68

Notepad
Two proposals for the notepad interface are presented in Figure 34. This page contains the
programs that have been evaluated “Want to see” by the user. On the first proposal it is
possible to remove the selected program again by pressing “X” or the user has the possibility
of choosing between see the program (the eye icon) or recording it (the red dot, as on an VCR
that is recording). The second possibility has also the “X” that removes programs from the list
again. This one also has two arrows so that the user can move around with the programs and
place them in the three categories: Want to see, Maybe want to see and Record.

Figure 34 : The notepad for the program list.

 User Interface Version 0.1 69

Detailed Description
This proposal of the detailed description contains a text describing the program showed,
program data like channel, start time etc., photo material relating to the program, news
concerning the programs, websites about the program and newsgroups where the single
program is discussed (see Figure 35).

Figure 35 : The detailed description of a program.

 User Interface Version 0.1 70

Help
The help is an important part of the system and that is why there has already been made the
first mock-ups. The first mock-up presented in Figure 36 shows a possible way of describing
the way of prioritising the programs.

Figure 36 : Help mock-up for the use of the priority.

The next is the help for the program list (see Figure 37).

Figure 37 : Mock-up of the program list help.

 User Interface Version 0.1 71

Menu Bar and Logo
The menu bar and logo is seen in Figure 38 and this is an important part because it shall help
the user not to feel trapped. The menu bar consists of links to the:
• Program list
• Search
• Logout
• User profile
• Help

Figure 38 : The logo and menu bar of the inTelly system.

 User Interface Version 0.1 72

Messages
The messages are thought as feedback to and from the user. The messages shall inform the
users about important things like programs that are about to start or maybe that a Repeater has
been moved (see Figure 39). The messages can also be used to get feedback from the user by
letting him/her prioritise the program presented in the message. The little “m” shown on the
figure below is a button that redisplays the last message.

Figure 39 : A mock-up of a possible message telling the user that a program is about to begin.

 User Interface Version 0.2 73

N. User Interface Version 0.2
This supplement will present the user interfaces that where designed for version 0.2 of the
inTelly system. The arguments for the design are presented in the Main report – 17. inTelly
version 0.2.

Create User
The create user page used in the version 0.2 is seen in Figure 40. There are no differences in
the way this page works from the one presented in version 0.1. There has here been added
some text describing how to create the user profile and what characters to use and not. There
has also been added an “Afbryd” button, which gives the user the possibility of stopping the
creation of the user profile.

Figure 40 : The version 0.2 of the create user interface.

 User Interface Version 0.2 74

Login
In the version 0.1 there where no login page but this has changed in the version 0.2. The login
page can be seen in Figure 41. At this page the user has to type in the username and password
and then press the “Log in” button to get into the system. If he/she regrets there is also the
possibility of using the “Afbryd” button that sends the user to the front page for non-
registered users.

Figure 41 : Login page for inTelly.dk version 0.2.

 User Interface Version 0.2 75

User Profile
The version 0.2 also contains a user profile. This version only contains a front page, a
channels page and a category page. The front page is seen on Figure 42 and contains as earlier
a description of what the user profile is used for. It also consists of a menu at the left side of
the page. This menu is present at all pages of the user profile to make navigation easier for the
user. The menu also contains to buttons for saving and retrieving the user profile from the
database.

Figure 42 : User profile front page.

The next page presents the channels page of the user profile (see Figure 43). Here the user has
the possibility of choosing the channels that are of interest. There are here the same
possibilities of selecting channels as in version 0.1.

 User Interface Version 0.2 76

Figure 43 : The channels selection page of the user profile.

 User Interface Version 0.2 77

The last page of the user profile in this version 0.2 is the categories page and it is presented on
Figure 44. There are the same features as on the version 0.1 page.

Figure 44 : The categories page in the user profile.

 User Interface Version 0.2 78

Programs List
There have been a number of changes to the program list from the version 0.1 to version 0.2.
First of all there has been created a user interface for non-registered users of the system (see
Figure 45). This page has all the facilities of a normal TV-guide like the filter and so on. An
extra feature is the possibility of sorting the single columns ascending or descending.

Figure 45 : The user interface for non-registered users.

 User Interface Version 0.2 79

On Figure 46,Figure 47, Figure 48 the new user interface for registered user can be seen. The
functionality of the interface has only changed a little from the earlier version. The program
list interface consists of the filter menu at the left side of the screen and the table of programs.
In this version it has been chosen to use the radio buttons for prioritising and adding programs
to the notepad, which in this version is integrated in the table of programs. The colour
indication on the page shows how the user has prioritised the programs and green indicates,
“Want to see”, yellow is “Maybe want to see” and red is “Do not want to see”. The grey and
dark grey colours are the systems indication of “Want to see” and “Do not want to see”. This
user interface also provides the possibility of sorting the single columns ascending or
descending. The programs with the colour red and dark grey are hidden if the check “Vis
skjulte” at the left side is checked.

Figure 46 : The program list user interface.

 User Interface Version 0.2 80

Figure 47 shows what happens when the short description check box is checked. In that case
there will be presented a short description for each of the programs in the program list.

Figure 47 : The program list with a short description for each of the programs.

 User Interface Version 0.2 81

The next shown is the program list with a built in pop-up functionality for the description (see
Figure 48). Besides the short description shown in Figure 47 there has also been created a
pop-up functionality that shows a description of the program when the mouse pointer is
pointing at the title of the program.

Figure 48 : A screendump of the program list where the pop-up description is showed.

 User Interface Version 0.2 82

Detailed Description
The detailed description has not changed since version 0.1 (see Figure 49).

Figure 49 : The detailed description.

 User Interface Version 0.2 83

Help
The help in version 0.2 has been change so that it is similar to the user profile. It consists of a
front page and a number of pages that describes the main pages in the system. As well as in
the user profile there has been created a menu at the left side of the page. The front page (see
Figure 50) gives an introduction to the help. On the help pages there is placed a navigation
button that sends the user to the next page within the help.

Figure 50 : The help front page.

 User Interface Version 0.2 84

The second page in the help is an introduction the to TV-guide itself. The page on Figure 51
tells the user what possibilities there are at this TV-guide and how it differs from the other
normal TV-guides.

Figure 51 : Introduction to the TV-guide itself.

 User Interface Version 0.2 85

Figure 52 presents the help for the program list. It describes the notepad function and the
prioritising of programs.

Figure 52 : The help for the program list.

 User Interface Version 0.2 86

Next is a presentation of the different pages in the inTelly system and the help page for this
can be seen on Figure 53.

Figure 53 : The presentation of the different pages in the system.

 User Interface Version 0.2 87

There is also a page containing help for use of the filters (see Figure 54).

Figure 54 : The filters help page.

 User Interface Version 0.2 88

The additional functionality like show hidden (Danish: “Vis skjulte”) and short description
(Danish: “Kort beskrivelse”) is also described. This is done on the functions page (Danish:
“Funktioner”) shown in Figure 55.

Figure 55 : The page that describes the different functions in the system.

 User Interface Version 0.2 89

The last page in the help is the help for the user profile (see Figure 56). Here it is described
what the user profile is used for and how inTelly.dk treats user data etc.

Figure 56 : The help page for the user profile.

Menu Bar and Logo
The only change from Version 0.1 is that the search link (Danish: “søg”) has been removed as
seen on Figure 57. The rest is like in version 0.1 this also goes for the functionality of the
different links.

Figure 57 : The version 0.2 logo and menu bar.

 User Interface Version 0.3 90

O. User Interface Version 0.3
This supplement will present version 0.3 of the user interfaces. This design has to be seen as a
somewhat finished design. The arguments for the design are placed in the Main report – 18.
inTelly version 0.3.

Create User
The only change to the create user interface since version 0.2 is the messages that has been
added (see Figure 58). This message slides in from the right top corner and gives the user an
indication of what to do to become a registered user.

Figure 58 : Screendump of the create user screen version 0.3.

 User Interface Version 0.3 91

Login
The login page seen on Figure 59 has not changed since version 0.2.

Figure 59 : This screendump presents the Login screen

 User Interface Version 0.3 92

User Profile
The user profile has not changed much since version 0.2. The main changes in this version are
the new pages that are added to the user profile. The new pages are keywords and repeaters
pages. The front page of the user profile has also changed a bit (see Figure 60). The difference
is that the user now is able to see which user’s profile is showing. There has also been added
the possibility of entering the users email address so that he or she can receive an email each
morning containing the TV-programs for the day. It is also possible to see when the user
profile last was saved. There has also been added a navigation button to each page that brings
the user to the next page.

Figure 60 : Here is the first page of the user profile presented.

 User Interface Version 0.3 93

The next page in the user profile (see Figure 61) is the channel selection page where the user
can select the wanted channels. The only difference from version 0.2 is the amount of text
presented on the page is reduced.

Figure 61 : Second page of the user profile presents the possible channels, which are in the system.

 User Interface Version 0.3 94

As in version 0.2 the next interface is the categories page where the user can select the wanted
categories he or she is interested in. This page has not changed from version 0.2 (see Figure
62).

Figure 62 : On the third page of the user profile the possible categories are presented.

 User Interface Version 0.3 95

Next is the new keyword interface (see Figure 63) where the user has the possibility to type in
keywords that that he or she thinks is interesting. The keywords are typed in separated by
spaces.

Figure 63 : The page where the user can type in some keywords.

 User Interface Version 0.3 96

The last page in the user profile is the Repeaters page. The actual Repeater list is present in its
own page (see Figure 65) and the design is like that of the program list but the introduction to
the feature repeaters is done in the user profile and can be seen in Figure 64.

Figure 64 : The last page of the user profile contains the introduction to the repeaters list.

The repeaters list shown in Figure 65 is almost the same as in version 0.2. This page is
corresponding to the Repeaters page in version 0.1 although the design has been changed. The
major change is the update (Danish: “Opdater”) button, which first lets the users update the
page when the button is pressed instead of updating it continuously like in version 0.2. The
prioritising of the repeaters is similar to the prioritising of the programs in the program list.

 User Interface Version 0.3 97

Figure 65 : This page contains the repeaters list where the user can choose which repeating programs he/she
wants to see or not.

 User Interface Version 0.3 98

Programs List
The program list has not been changed drastically from the previous version. There have only
been a few minor graphical changes to make it easier to understand for the user.

Figure 66 shows the program list for non-registered users. The main difference from version
0.2 is that there has been added a box called “Filter” showing the solidarity of the four select
boxes. Another box with the title additional functionality (Danish: “Supplerende funktioner”)
has also been created. In this box the short description check box is located together with the
search facility and the print facility. There is also an install link (Danish: “Installer XML”),
which sends a new user to download page where he/she can download the necessary
installations for XML.

Figure 66 : The program list for the users that are NOT logged in to the system.

 User Interface Version 0.3 99

As already mentioned the changes of the program list user interface are only cosmetic. The
changes made to the interface for users that is logged in to the system is the same as just
mentioned above. The only difference is the show hidden (Danish: “Vis skjulte”) check box,
which has been placed in the filter box (see Figure 67).

Figure 67 : The program list for logged in users

 User Interface Version 0.3 100

Figure 68 shows the program list where a pop-up description of a program is showed. The
pop-up description of the program is shown as soon as the mouse pointer points at the
program title.

Figure 68 : The program list where a pop-up description of a program is shown.

 User Interface Version 0.3 101

Next is the program list with activated short description shown (see Figure 69). Only minor
modifications has been made since the version 0.2. The description is now accompanied by a
graphical representation of the start and stop time for the program.

Figure 69 : This is the program list for the users that are logged in to the system. Here there have chosen to
get a short description presented together with the program listening.

 User Interface Version 0.3 102

Detailed Description
The detailed description has changed massively since version 0.2 (see Figure 70). The new
design of this page only present data concerning the TV-program and not like before a lot of
additional information. It is also possible to prioritise the program at this page and if the
program is a Repeater it can also be added with the desired priority to the repeaters list. The
information showed here on the detailed description is now the same as the data shown in the
program list.

Figure 70 : This is the detailed description where the user can read more about the program.

 User Interface Version 0.3 103

Help
The inTelly system help has also changed a bit in this version. The major changes are the new
page that has been added and the fast help facility that has been added. The extra page is
concerning the messages in the system. The fast help facility is the picture located below the
menu at the left side. When clicking e.g. the filters of the picture the users will be sent to the
help page concerning the filters. There has also been made some cosmetic changes to the help
like changes in the names of the pages.

The first page is the help front page (see Figure 71) that gives an introduction to the help
facilities.

Figure 71 : Ths is the help front page from where it is possible to navigate deeper into the help facilities.

 User Interface Version 0.3 104

The next page is the introduction (Danish: “Indledning”) to the inTelly system, which also
existed in the last version. See the new design on Figure 72.

Figure 72 : The introduction page within help.

 User Interface Version 0.3 105

Next is a presentation of the main menu that is present on all pages. There is also a description
of the different links (see Figure 73).

Figure 73 : The help page explaining the main menu.

 User Interface Version 0.3 106

Next is the description of the program list, how it should be used and how it is working (see
Figure 74).

Figure 74 : The help for the program list.

 User Interface Version 0.3 107

Figure 75 contains the help for the use of the filters on the program list.

Figure 75 : Filters help page.

 User Interface Version 0.3 108

After the filters page the page with help for the additional functions (Danish: “Supplerende
funktioner”) is placed. This page can be seen on Figure 76.

Figure 76 : The help page for the additional functions.

 User Interface Version 0.3 109

Figure 77 shows the help for the user profile. This page has like the other not much changed
since last version.

Figure 77 : The help concerning the user profile.

 User Interface Version 0.3 110

The last page in the system help is the help concerning the system messages. This page
describes what the messages are and what they are used for (see Figure 78).

Figure 78 : The help about the messages in the system.

 User Interface Version 0.3 111

Menu Bar and Logo
The logo and menu bar has not changed in the last versions. The changes concerning a logged
out user are now as seen on Figure 79.

Figure 79 : The logo and menu bar for a logged OUT user

Contrary from the logged out menu bar the logged in menu bar has changed a bit since
version 0.2. The difference here is the additional option that is on the latest version. This extra
option is the link to the repeaters page (see Figure 80).

Figure 80 : The logo and menu bar for a logged in user

Messages
Figure 81 shows the new design of the system messages. As it can be seen it has changed
since the first draft in version 0.1. The messages are now only used as feedback and
information for the user.

Figure 81 : An example of an
system message.

 User Interface Version 1.0 112

P. User Interface Version 1.0
This supplement contains all the user interfaces that are present in the version 1.0 of the
inTelly system. There is no description of any of the user interfaces in this supplement. The
description of the different interfaces can be found in the Main report – 20. User Interface.

Create User

Figure 82 : The create user interface.

 User Interface Version 1.0 113

Login

Figure 83 : Login interface for inTelly.dk

User Profile

Figure 84 : The front page of the user profile.

 User Interface Version 1.0 114

Figure 85 : The channel selection interface in the user profile.

Figure 86 : The interface for choosing the wanted categories in the user profile.

 User Interface Version 1.0 115

Figure 87 : The keyword page of the user profile.

 User Interface Version 1.0 116

Figure 88 : The delete user interface in the user profile.

 User Interface Version 1.0 117

Program List

Figure 89 : The program list user interface for the non-registered users.

 User Interface Version 1.0 118

Figure 90 : The program list presented to the logged in users.

Figure 91 : The program list where a pop-up description on a program is shown.

 User Interface Version 1.0 119

Figure 92 : The program list with the short description presented for each program.

 User Interface Version 1.0 120

Detailed Description

Figure 93 : The detailed description for a single program.

 User Interface Version 1.0 121

Repeaters

Figure 94 : The repeaters page, where the user can select/deselect repeating programs.

 User Interface Version 1.0 122

Help

Figure 95 : The front page of the help pages.

 User Interface Version 1.0 123

Figure 96 : The introduction to the inTelly.dk TV-guide placed together with help.

Figure 97 : The help for the menu bar at the top of all pages.

 User Interface Version 1.0 124

Figure 98 : The help cartoon for the program list.

 User Interface Version 1.0 125

Figure 99 : The description of the filters.

Figure 100 : The help for the additional functionality.

 User Interface Version 1.0 126

Figure 101 : The presentation of the user profile and what it contains.

 User Interface Version 1.0 127

Figure 102 : A description of the system messages that pop-up when the user e.g. prioritises a program the first
time.

 User Interface Version 1.0 128

Figure 103 : The help/description for the repeaters page.

Menu Bar and Logo

Figure 104 : The logo and menu bar for non-registered users.

Figure 105 : The menu and logo presented to registered users.

 User Interface Version 1.0 129

Messages

Figure 106 : This is an example of the design of

the messages in the system. The
message here is presented to the
when he/she creates a new user.

